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Srinivasa S. R. Varadhan was born in Madras (Chennai), India in 1940. He got his B. Sc. 

from Presidency College in 1959 and his Ph.D. from the Indian Statistical Institute in 

1963. Since 1963 he has been working at the Courant Institute of Mathematical Sciences 

at New York University. The Courant Institute  — one the worlds leading centers of 

applied mathematics — is also the home institution of the 2005 Abel Laureate, Peter Lax. 

 

Although his work is often motivated by problems in neighboring fields such as 

mathematical physics and partial differential equations, Varadhan is primarily a 

probabilist. Historically, probability theory started as an attempt to understand simple 

games of chance, often with betting involved. In such games there is a finite number of 

possible outcomes, and the task is to find the probability of each one. Although this may 

sound simple, these problems often require a lot ingenuity. The subject soon moved on, 

however, to more important and difficult issues. These problems often have to do with 

what happens if one repeats the same experiment over and over again, and the 

mathematical laws governing these repeated experiments are often called limit laws as 

they describe what happens “in the limit” as one performs the experiments more and 

more times. Two of these limit laws we all have some experience with. 

 
 

To describe the first of these laws, let us assume that we are tossing a coin many times. If 

the coin is fair, we would expect the proportion of “heads” to stabilize around 1/2 as we 



toss the coin more and more times. This is an instance of the Law of Large of Numbers 

which says that if we repeat the experiment more and more times, the proportion of heads 

will (with probability one) go to exactly 1/2. The figures above illustrate what happens. 

In each case we have performed four sequences of coin tosses and computed the 

proportion of “heads”. The figure in the upper, left hand corner shows the results when 

we toss the coin 50 times. The other figures show the results when we toss the coin 100 

times, 200 times and 1000 times, respectively. We see that the convergence is rather 

slow; even when we toss the coin 1000 times, the results are clearly separable. 

 

To describe the other limit law that we all have some experience with, let us assume that 

we are measuring the heights of Norwegian (male) soldiers. If we make a diagram of how 

many soldiers there are of each height (i.e. how many are 175 cm tall, how many are 176 

cm etc.), we soon see that this diagram takes on a bell shaped form, and as we add the 

heights of more and more soldiers, the curve becomes more and more regular. The curve 

is symmetric around its center, and the center point is the average height (around 180 cm 

for Norwegian male soldiers). If we did the same experiment with female soldiers, we 

would get the same kind of bell shaped curve, but with a different center (as woman are 

in average not as tall as men) and a slightly different width. What we are seeing here are 

consequences of the Central Limit Theorem which basically says that statistical 

properties which depend on a lot of small, independent factors have a bell shaped 

distribution. These bell shaped distributions are called normal distributions, and different 

normal distributions are described by two numbers (the mean and the variance) — one 

telling us where the center is and the other telling us how wide and flat the curve is. The 

figure below shows two normal distributions with different centers and different widths, 

i.e. different means and different variances.  

 
Why are these limit laws important? They are important because in most practical 

situations one is interested in large collections of statistical data. If you are running a car 

insurance company, you are not interested in each individual car, but you are interested in 

how many accidents (and what kinds of accidents) all the cars you insure will be in 

involved in. If you are building an oil drilling platform in the North Sea, and you worry 

about the impact of the ocean waves on the construction, you don’t worry about the 

impact of each individual wave, but of the collective impact of all of them. If you are 

building a telephone network and worry about the capacity, you are not interested in each 



individual customer, but you worry about the probability that too many of them will pick 

up the phone at the same time during peak hours. 

 

If you look at the mathematical problems suggested by the examples above, you will find 

that many of them can be solved using the Law of Large Numbers and the Central Limit 

Theorem. But not all! An interesting question they can not tackle, is the question of 

“large deviations”. To explain this problem, let us go back to coin tossing. If we flip a 

coin many times, we expect the proportion of “heads” to be around 1/2. But this need not 

happen — even if you flip the coin a thousand times, there is a small (extremely small!) 

probability that the coin will show “heads” every time. There is a larger — but still 

extremely small — probability that the proportion of “heads” will be (say) 3/4 instead of 

1/2.  The art of large deviations is to calculate the probability of such rare events. 

 

Large deviations were first studied by the great Swedish statistician and insurance 

mathematician Harald Cramér (1893-1985) in the late 1930s. It is easy to see why the 

problem would attract the attention of somebody interested in insurance mathematics. 

The premium you have to pay for your car insurance, is based on the statistics from 

previous years — the company needs to collect enough money to cover the claims of 

unfortunate drivers. But what if this year happens to be an extremely bad year — that for 

some unforeseen reason (perhaps just bad luck) much more cars crash than previous 

years? If the company has to pay out more money than it has got, it is obviously in 

trouble!  

 

There is no way one can totally avoid this problem — if the company made the premium 

so high that it covered the unlikely (but still possible) case that all cars crashed, the 

insurance would be so expensive that nobody would buy it! Now, a bad year is a large 

deviation, and what the company needs to do, is to compute the probability of these large 

deviations of various sizes, and try to find a reasonable level of risk. There are similar 

problems in our other examples above — if you build an oil rig in the North Sea, you 

have to worry about the probability of extremely large and extremely rare waves (“the 

hundred year wave”), and if you set up a telephone network, you need to know how 

likely it is that it will occasionally break down due to overload. It may be worthwhile to 

invest a little more in increased capacity rather than have to face angry customers every 

now and then! 

 

One of Varadhan’s great contributions is to turn the technique of large deviations into a 

very strong and versatile tool with applications in many areas of mathematics and related 

sciences (some of this work was done in collaboration with his colleague at the Courant 

Institute, Monroe Donsker). Varadhan’s Large Deviation Principle succinctly sums up 

what is needed to apply the technique successfully, and it covers a surprising number of 

seemingly different situations. The theory is a tour de force of many areas of 

mathematics; it combines probability theory with convex analysis, nonlinear 

programming, functional analysis and partial differential equations. It turns out that the 

theory of large deviations is much more subtle than the theory of classical limit laws such 

as the Law of Large Numbers and the Central Limit Theorem. In these limit laws, the 

important thing is that the same kind of event is counted again and again; the nature of 



each individual event is of little importance (or, more correctly, what is important is 

easily summarized in two numbers, the mean and the variance). In large deviations, the 

nature of the individual events is of the outmost importance — different kinds of events 

give rise to quite different probabilities for large deviations. An insurance company 

which wants to compute precise estimates for large deviations hence needs to know more 

about car accidents than just how often they happen and how much they cost on average. 

 

In addition to the examples I have already referred to, I would like to add the many 

applications that large deviation theory has found in mathematical physics. Many 

physical theories are statistical in nature. If, for instance, you want to describe the air in 

this room or the water in a flowing river, you cannot possible describe the motion of each 

individual molecule or particle involved. Instead you describe the statistical behavior of 

the totality of particles in terms of macroscopic quantities such as pressure and flux. The 

laws and equations you then get are not probabilistic, they just describe the average or 

expected behavior of the gas or the fluid. You may think of this as a much more 

complicated version of our coin-tossing experiment — in that experiment, the average 

behavior of our probabilistic experiment was summed up in the simple number 50%; in 

the present case, the total probabilistic behavior of the particles is summed up in the laws 

of thermodynamics and hydrodynamics! But as in the coin-tossing game, there are 

fluctuations also in this situation — perhaps there is a very small probability that all the 

air in this room will suddenly concentrate on this end and leave you suffocated at the 

other end!   

 

In fact, these problems are even more complicated than what I have described so far since 

the behavior of the particles is not really random at all — they move according to the 

fundamental laws of physics, and their behavior only looks random because they collide 

and interact all the time. The derivation of the equations of hydrodynamics and 

thermodynamics from first principles is thus a two stage process — first to derive the 

statistical behavior of the particles from the laws of physics and then to deduce 

macroscopic laws from this statistical description. With collaborators, Varadhan has done 

impressive work in this area, often using large deviations as a tool. 

 

Let us go back to the coin tossing experiment to take a look at another aspect of 

Varadhan’s work. We can think of coin tossing as a very simple gambling game — each 

time we toss the coin and “heads” come up, I win and you have to pay me a dollar, but 

each time “tails” come up, you win and I have to pay you a dollar. This game is “fair” in 

an obvious sense — in average, I cannot expect to win anything and neither can you! Let 

us change the game slightly and throw a die instead of a coin. This time I get 5 dollars 

from you each time we throw a “six”, but you get one dollar from me each time one of 

the other sides comes up. The game is still “fair” in the sense I described above — I get 

five times as much as you each time I win, but you can expect to win five times as often, 

and neither of us can expect to win anything in the long run. Games which are fair in this 

sense are called martingales, and this notion can be generalized to much more general 

contexts. Over the last fifty years, it has become clear that martingales are extremely 

useful tools in the study of random phenomena. In the 1970s, Varadhan and D.W. 

Stroock wrote an impressive series of papers on so called “martingale problems” 



culminating in their book “Multidimensional Diffusion Processes” of 1979. Their 

approach unified, simplified and extended the previous results in the area substantially. 

The basic idea is that instead of looking for solutions to quite complicated problems of 

mathematical analysis, “all” one has to look for is a probability distribution which turns 

certain processes into martingales. 

 

- — - 

 

I have mentioned some the most important of Varadhan’s contributions to mathematics, 

but there are many more. His is a prolific scientist with deep insights and an impressive 

array of technical tools, and he is very highly regarded and esteemed in the probability 

community. This does not only have to do with his results, but also his style — listening 

to a lecture by Varadhan, one is not only exposed to the best and most recent results in 

the subject, but one is also introduced to a way of thinking. His talks always emphasize 

the basic ideas, the challenges, the obstacles, and the delicate balance between the 

desirable and the possible which one has to strike to produce top class mathematical 

results. S. R. S. Varadhan is certainly a worthy winner of the Abel Prize! 


