The Weil Conjecture

Deligne’s best known achievement is his spectacular solution of the last and deepest
of the Weil conjectures, namely the analogue of the Riemann hypothesis for
algebraic varieties over a finite field.

André Weil wrote in 1949, in the paper Numbers of solutions of equations in finite fields: ..
and other examples which we cannot discuss here, seem to lend some support to the
following conjectural statements, which are known to be true for curves, but which I have not
so far been able to prove for varieties of higher dimension.
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The statements Weil was not able to prove have been named the Weil conjectures. The issue
of the Weil conjectures is so-called zeta functions. Zeta functions are mathematical
constructions that keep track of the number of solutions of an equation, in different number
systems. When Weil says that the conjectural statements are known to be true for curves, he
means that they are true for equations in two unknown. Varieties in higher dimensions, as
referred to, correspond to equations in three or more unknowns.

The equation x?-y?=3 describes a plane curve, and as we have showed in the frame above the
equation has 4 solutions in the number system {0,1,2,3,4} when counting modulo 5.

We notice that none of the numbers 0,1,2,3,4 have square equal to 2. We therefore introduce
a new number a, the square root of 2. This number is not an element of the original set
0,1,2,3,4 and is determined by the equation a’=2. Extending the number system to include a,
gives us many new solutions to the equation x?-y?=3, e.g. x=0 and y=a since 0%2-a’=-2=3
when counting modulo 5. Another solution is given by x=a and y=2. All together we find 24
different solutions in the extended number system. The two numbers 4 and 24 decides the
two first terms of the zeta function in this example.

The Weil conjectures are formulated in four statements. Weil proved himself the conjectures
in the curve case. For more general equations, three of the four statements were proved by
other mathematicians in the following 10-15 years after the publishing of Weil’s paper in
1949. The last statement, the most difficult, analogous to the Riemann hypothesis, was
proved by Pierre Deligne in 1974.

It soon became clear that the conjectures would be proved if one could find a certain type of
cohomology, called Weil cohomology. Cohomology are mathematical tools that were
developed in 1920- and 30 s to understand and systematize knowledge about geometric
shapes and structures. The more complicated the structure, the more cohomology. Weil had
no suggestions on how to define Weil cohomology, but he knew what qualities cohomology
should have to provide a proof of the Weil conjectures.



At the end of the 1940s nobody knew any cohomology which could solve the conjectural
problem and thus unify the geometric aspect, related to the solution of equations and the
arithmetic aspect, represented by the finite fields (number systems). The solution came in
1960. At that time Alexander Grothendieck introduced the concept of étale cohomology and
proposed that it should play the role of the mysterious, unknown, but essential Weil
cohomology. The problem however, was to prove that the étale cohomology satisfies the
requirements to be a Weil cohomology. Grothendieck was not able to do so, but fortunately
he had a young student, Pierre Deligne who succeeded in this task. By a complicated
reasoning, where he based his arguments on several previous achievements made by other
mathematicians, Deligne was able to prove the Weil conjectures in full generality. The result
provoked attention and brought Deligne into the mathematical elite.

NUMEERS OF SOLUTIONS OF EQUATIONS
IN FINITE FIELDS
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The equations to be considered here are those of the type

i1 apry + mx o+ oo oo = b,

Such equations have an interesting history. In art. 3158 of the Disguisi-
tiemes [1 &), Gauss determines the Ganssian sums (the so-called
cyclotomic “periods™) of order 3, for a prime of the form p=3r+1,
and at the same time obtains the numbers of solutions for all con-
gruences ex*—by?=1(mod p}. He draws attention himself to the ele-
gance of his method, as well as to its wide scope; it is only much
later, however, iz, in his first memoir on biquadratic residues [1b],
that he gave in print another application of the same method; there
he treats the fiext high-ﬂr CsE, fnds Thg 11||rr.||;a-e-.r -;ﬂ soliitions of any
congruence ax'=ky=1 (mod @), for a prime of the form p=4m+1,
and derives from this the |!ri|:||.|al:||.':|.li-;_: character of 2 mod _ﬁ'. thia being
the ostensible purpose of the whole highly ingenious and intricate in-
vestigation. As an incidental consequence (“coromidis loco,™ p. 89),
he also gi\-‘rﬂ. in substance the number of solutions of ANY CONErUence
Peaept—b (mod ) ; this result includes as a special case the theorem
stated as a conjecture (Tobservaldo per fnductionem focle gravissima™)
in the last entry of his Tagebnck [1e]® and it implies the truth of
what has lately become known as the Riemann hypothesis, for the
function-feld defined by that equation over the prime held of @ ele-
ments,

Gauss' procedure is wholly elementary, and makes no use of the
Gaussian sums, since it is rather his purpose to apply it to the de-
termination of such sums, If one tries to apply it to more general cases,
however, caleulations soon become unwickdy, and one realizes the
necessity of inverting it by taking Gaussian sums as a starting point.
The means for doing so were supplied, as early as 1827, by Jacobi, in
a letter to Gauss [2a] (cf. [2b]). But Lebesgue, who in 1837 devoted
two papers [38, b to the case ng= « « - =, of equation (1), did not
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Counting modulo 5

Counting modulo 5 means that in stead of counting 0,1,2,3,4,5,6,7,8,..., we count
0,1,2,3,4,0,1,2,3,..., i.e. we start again at 0 every time we reach 5. The computation 4+2
means counting 2 steps further from 4. Counting modulo 5, doesn’t bring us to 6, but rather
to 1, i.e. 4+2=1.

Another example of modulo-counting is time, where we count modulo 12. If we leave home at
10 o’clock and stays out for four hours, then we return at 2 o’clock.



Back to modulo 5 counting. The computation 3:-4 modulo 5, means counting to 4 three times,
ie. 1,2,3,4,0,1,2,3,4,0,1,2, which gives 3-4=2. The number system {0,1,2,3,4} with these
computation rules is called a finite field of 5 elements.

Our aim is to find the solutions of the equation x2-y2=3 within this number system. Computing
all the squares, 0°=0, 1°=1, 2?=4, 3?°=4 and 4?=1, we see that the only possibility to achieve
a difference 3 between two squares is when x?=4 og y?=1. There are two numbers of square
4 (22 and 32?), and two of square 1 (12 and 42), thus we get all together four solutions, x=2
and y=1, x=2 and y=4, x=3 and y=1, and x=3 and y=4.



