
The Weil Conjecture 

Deligne’s best known achievement is his spectacular solution of the last and deepest 

of the Weil conjectures, namely the analogue of the Riemann hypothesis for 

algebraic varieties over a finite field. 

André Weil wrote in 1949, in the paper Numbers of solutions of equations in finite fields: .. 

and other examples which we cannot discuss here, seem to lend some support to the 

following conjectural statements, which are known to be true for curves, but which I have not 

so far been able to prove for varieties of higher dimension. 

André Weil 

The statements Weil was not able to prove have been named the Weil conjectures. The issue 

of the Weil conjectures is so-called zeta functions. Zeta functions are mathematical 

constructions that keep track of the number of solutions of an equation, in different number 

systems. When Weil says that the conjectural statements are known to be true for curves, he 

means that they are true for equations in two unknown. Varieties in higher dimensions, as 

referred to, correspond to equations in three or more unknowns. 

The equation x2-y2=3 describes a plane curve, and as we have showed in the frame above the 

equation has 4 solutions in the number system {0,1,2,3,4} when counting modulo 5. 

We notice that none of the numbers 0,1,2,3,4 have square equal to 2. We therefore introduce 

a new number α, the square root of 2. This number is not an element of the original set 

0,1,2,3,4 and is determined by the equation α2=2. Extending the number system to include α, 

gives us many new solutions to the equation x2-y2=3, e.g. x=0 and y=α since 02-α2=-2=3 

when counting modulo 5. Another solution is given by x=α and y=2. All together we find 24 

different solutions in the extended number system. The two numbers 4 and 24 decides the 

two first terms of the zeta function in this example. 

The Weil conjectures are formulated in four statements. Weil proved himself the conjectures 

in the curve case. For more general equations, three of the four statements were proved by 

other mathematicians in the following 10-15 years after the publishing of Weil’s paper in 

1949. The last statement, the most difficult, analogous to the Riemann hypothesis, was 

proved by Pierre Deligne in 1974. 

It soon became clear that the conjectures would be proved if one could find a certain type of 

cohomology, called Weil cohomology. Cohomology are mathematical tools that were 

developed in 1920- and 30`s to understand and systematize knowledge about geometric 

shapes and structures. The more complicated the structure, the more cohomology. Weil had 

no suggestions on how to define Weil cohomology, but he knew what qualities cohomology 

should have to provide a proof of the Weil conjectures. 



At the end of the 1940s nobody knew any cohomology which could solve the conjectural 

problem and thus unify the geometric aspect, related to the solution of equations and the 

arithmetic aspect, represented by the finite fields (number systems). The solution came in 

1960. At that time Alexander Grothendieck introduced the concept of étale cohomology and 

proposed that it should play the role of the mysterious, unknown, but essential Weil 

cohomology. The problem however, was to prove that the étale cohomology satisfies the 

requirements to be a Weil cohomology. Grothendieck was not able to do so, but fortunately 

he had a young student, Pierre Deligne who succeeded in this task. By a complicated 

reasoning, where he based his arguments on several previous achievements made by other 

mathematicians, Deligne was able to prove the Weil conjectures in full generality. The result 

provoked attention and brought Deligne into the mathematical elite. 

 

 

 

Counting modulo 5 

Counting modulo 5 means that in stead of counting 0,1,2,3,4,5,6,7,8,..., we count 
0,1,2,3,4,0,1,2,3,..., i.e. we start again at 0 every time we reach 5. The computation 4+2 

means counting 2 steps further from 4. Counting modulo 5, doesn’t bring us to 6, but rather 
to 1, i.e. 4+2=1. 

Another example of modulo-counting is time, where we count modulo 12. If we leave home at 
10 o’clock and stays out for four hours, then we return at 2 o’clock. 



Back to modulo 5 counting. The computation 3·4 modulo 5, means counting to 4 three times, 
i.e. 1,2,3,4,0,1,2,3,4,0,1,2, which gives 3·4=2. The number system {0,1,2,3,4} with these 
computation rules is called a finite field of 5 elements. 

 
Our aim is to find the solutions of the equation x2-y2=3 within this number system. Computing 
all the squares, 02=0, 12=1, 22=4, 32=4 and 42=1, we see that the only possibility to achieve 
a difference 3 between two squares is when x2=4 og y2=1. There are two numbers of square 
4 (22 and 32), and two of square 1 (12 and 42), thus we get all together four solutions, x=2 
and y=1, x=2 and y=4, x=3 and y=1, and x=3 and y=4. 

 


